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Abstract
Conservation of biological communities requires accurate estimates of abundance for 
multiple species. Recent advances in estimating abundance of multiple species, such as 
Bayesian multispecies N-mixture models, account for multiple sources of variation, in-
cluding detection error. However, false-positive errors (misidentification or double 
counts), which are prevalent in multispecies data sets, remain largely unaddressed. The 
dependent-double observer (DDO) method is an emerging method that both accounts 
for detection error and is suggested to reduce the occurrence of false positives because 
it relies on two observers working collaboratively to identify individuals. To date, the 
DDO method has not been combined with advantages of multispecies N-mixture mod-
els. Here, we derive an extension of a multispecies N-mixture model using the DDO 
survey method to create a multispecies dependent double-observer abundance model 
(MDAM). The MDAM uses a hierarchical framework to account for biological and obser-
vational processes in a statistically consistent framework while using the accurate obser-
vation data from the DDO survey method. We demonstrate that the MDAM accurately 
estimates abundance of multiple species with simulated and real multispecies data sets. 
Simulations showed that the model provides both precise and accurate abundance esti-
mates, with average credible interval coverage across 100 repeated simulations of 94.5% 
for abundance estimates and 92.5% for detection estimates. In addition, 92.2% of abun-
dance estimates had a mean absolute percent error between 0% and 20%, with a mean 
of 7.7%. We present the MDAM as an important step forward in expanding the applica-
bility of the DDO method to a multispecies setting. Previous implementation of the DDO 
method suggests the MDAM can be applied to a broad array of biological communities. 
We suggest that researchers interested in assessing biological communities consider the 
MDAM as a tool for deriving accurate, multispecies abundance estimates.

K E Y W O R D S

abundance model, Bayesian N-mixture model, dependent double-observer, false positive, 
multiple species

1  | INTRODUCTION

Effective conservation of biodiversity, the abundance of individuals and 
species within a given area, requires reliable models to predict changes 

in the abundance of multiple species. Species have different life his-
tory strategies and often respond differently to natural and anthro-
pogenic disturbances (Buckland, Magurran, Green, & Fewster, 2005; 
Tulloch, Possingham, & Wilson, 2010; Tylianakis, Didham, Bascompte, 
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& Wardle, 2008; Wiens, Hayward, Holthausen, & Wisdom, 2008). 
The underlying cause of changes in biodiversity may be complex. For 
example, abundance of one species may vary in response to changes 
in abiotic conditions. This can lead to changes in other species abun-
dance through other biotic interactions. Multispecies abundance in-
formation can help disentangle these complex responses (Barnagaud, 
Barbaro, Papaix, Deconchat, & Brockerhoff, 2014; Dorazio & Connor, 
2014; Ockendon et al., 2014). Empirical evidence suggests that if the 
multiple species are selected based on similar life history traits (i.e., 
they are limited by the same biological processes), they can represent 
what is occurring in the community (Lindenmayer et al., 2014).

However, many multispecies studies fail to account for imperfect 
detection (Iknayan, Tingley, Furnas, & Beissinger, 2014), one of the 
main challenges associated with any abundance estimates (Schwarz & 
Seber, 1999; Seber, 1986, 1992). Accounting for imperfect detection 
is important when considering a wide variety of species with different 
detection rates. Imperfect detection results from two processes gov-
erning the components of detection (Table 1): (1) Biological processes 
that influence abundance and determine availability; and (2) observa-
tion processes that determine detectability, which can be affected by 
species, observer experience, time of day, and other factors (Alldredge, 
Simons, & Polluck, 2007; Farnsworth et al., 2002; Pacifici, Simons, & 
Pollock, 2008; Simons, Alldredge, Pollock, & Wettroth, 2007). Failing 
to account for imperfect detection when monitoring multiple species 
can lead to incorrect inferences about drivers of change in abundance 
or biodiversity (Buckland et al., 2005; Iknayan et al., 2014; Kéry & 
Schaub, 2012). Imperfect detection from different sources can pro-
duce similar abundance patterns that result from entirely different 
mechanisms. For example, a common species may be consistently 
available (i.e., present), but have a low detectability because of cryptic 
behavior. A rare species, on the other hand, may be mostly unavailable 
across sites (i.e., present only in a low density), but have high detect-
ability as a result of conspicuous vocalization. All of these factors can 
differentially affect the observation of each species, producing differ-
ent observed counts, and ultimately abundance estimates.

Recent abundance estimation methods based on N-mixture mod-
els have expanded from a single species (Royle, 2004) to a multispe-
cies context (Kéry, Royle, & Schmid, 2005). N-mixture models produce 
adjusted abundance estimates using information contained within re-
peated counts to estimate detection. The extension of an N-mixture 
structure from single species abundance model to multispecies 
abundance models allows simultaneous estimates of abundance and 

detection probability for numerous species using spatially and tempo-
rally replicated counts (Kéry & Schaub, 2012). Multispecies N-mixture 
models can incorporate species-specific or site-specific covariates, 
such as habitat type, as well as share information between species in 
both the biological and observation processes (Chandler et al., 2013; 
Dorazio & Connor, 2014; Iknayan et al., 2014; Yamaura et al., 2012; 
Yamaura et al., 2016). As a result, multispecies N-mixture models are 
being used to assess various components of biodiversity, including 
the response of forest bird biodiversity to different types of land-use 
practices (Chandler et al., 2013; Yamaura et al., 2012), community as-
sembly of forest birds (Barnagaud et al., 2014), species interactions 
(Dorazio & Connor, 2014), and to examine species-area relationships 
(Yamaura et al., 2016).

One of the major limitations of current multispecies N-mixture 
models is that they do not address imperfect detection in the form of 
false-positive errors (i.e., the detection of an individual that is not pres-
ent because of either misidentification or double count of another indi-
vidual; hereafter “false positives”) (Iknayan et al., 2014). False positives 
have been documented in many different types of ecological survey 
data (Miller et al., 2015). Royle and Link (2006) suggested that false 
positives due to misidentification can be highly prevalent in multispe-
cies data. If not accounted for, even small rates of false positives can 
lead to substantial biases (Connors, Cooper, Peterman, & Dulvy, 2014; 
Fitzpatrick, Preisser, Ellison, & Elkinton, 2009; Miller et al., 2011; Royle 
& Link, 2006). Design-based (e.g., Miller et al., 2012; Molinari-Jobin 
et al., 2012) and statistical methods (e.g., Royle & Link, 2006) have 
been developed to account for sources of variation that lead to false 
positives, but they are difficult to incorporate. Most often, researchers 
assume that false positives do not occur (Miller et al., 2012; Nichols 
et al., 2000; Royle & Link, 2006).

The dependent double-observer (DDO) method is a survey method 
that reduces false-positive observations using removal-based meth-
odology to calculate detectability (Nichols et al., 2000). The method 
uses two observers with different roles. The primary observer dictates 
all individuals he/she observes during a survey to the secondary ob-
server. The secondary observer notes the identity and location of the 
individuals observed by the primary observer. In addition, the second-
ary observer notes individuals missed by the primary observer. This 
process relies on the secondary observer verifying the observations 
of the primary observer, making an incorrect detection in the majority 
of the observations less likely than with a single observer acting alone 
(Nichols et al., 2000). In addition, the DDO has been shown to reduce 

Biological process Observation process
Detection error 
present? Detection outcomeAvailabilitya Detectabilityb

Available (present) Detected No True positive

Not detected Yes False negative

Not available (not 
present)

Detected Yes False positive

Not detected No True negative

aThe probability that an individual is present and available for observation at a plot. Independent of 
detectability.
bThe probability an observer detects an individual. Dependent on availability.

TABLE  1 Two processes, biological and 
observation, influence the two components 
of detection, availability, and detectability. 
Detection error results from two specific 
combinations of these two processes
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false negatives (i.e., missed detections) compared to single observer 
methods (Golding & Dreitz, 2016; Kissling & Garton, 2006). The DDO 
method has been successfully applied in arid and woodland environ-
ments to estimate avian abundance (Kissling & Garton, 2006; Nichols 
et al., 2000; Tipton, Doherty, & Dreitz, 2009) and occupancy (Tipton, 
Dreitz, & Doherty, 2008).

Although recent studies have used multispecies N-mixture 
models to track biodiversity in response to different land use types 
(Chandler et al., 2013; Yamaura et al., 2012), none have provided 
methods to reduce false positives. Here, we provide an expansion of 
the multispecies N-mixture framework to account for false positives 
by incorporating the DDO method in a multispecies, multiseason 
framework. We simulated abundance and count data for four species 
to develop this multispecies dependent double-observer abundance 
model (MDAM). We then applied the MDAM to case study data col-
lected on prairie songbirds over multiple years on private and pub-
lic lands in eastern Montana. Songbirds are becoming increasingly 
important indicators in diversity monitoring (Iknayan et al., 2014). 
Studies have shown that changes in songbird abundance and biodi-
versity are reliable indicators of impacts resulting from anthropogenic 
disturbance and land management in numerous ecosystems (e.g., 
Bradford et al., 1998; Canterbury, Martin, Petit, Petit, & Bradford, 
2000; Coppedge, Engle, Masters, & Gregory, 2006; Coppedge, 
Fuhlendorf, Harrell, & Engle, 2008; Mac Nally, 1997; Schulze et al., 
2004). With the reduction in false positives, the MDAM can pro-
vide more reliable estimates and rigorous inference about changes 
in communities than previously available. Additionally, the MDAM 
increases the accuracy of large-scale, multispecies, multiseason bio-
diversity monitoring.

2  | MATERIALS AND METHODS

2.1 | MDAM basic structure

To develop the MDAM, we extended previous approaches to simi-
lar multispecies abundance problems (e.g., Chandler et al., 2013; 
Yamaura et al., 2012). The basic structure of the MDAM includes 
two hierarchical processes: a biological and observation process. The 
biological process estimates the true abundance of multiple species 
on a landscape. To allow for independent responses among species, 
we extended a single-species N-mixture model approach (i.e., no in-
formation sharing between species) to model the biological process. 
The observation process estimates the probability of detection using 
the outcome of two observers using the DDO method and the true 
abundance from the biological process. The MDAM accounts for im-
perfect observation by estimating the probability that an observer 
detects an individual during a survey. This is calculated from the dif-
ferent observation outcomes between the two observers in the DDO 
method. Similar to the approach in the biological process, we applied 
the single-species N-mixture approach to model the detection of each 
species. However, we have included the multispecies N-mixture ex-
tensions in the R code provided in Data S1. The structure of each 
hierarchical process within the MDAM is described below.

2.1.1 | Modeling abundance

We considered the likelihood for the latent abundance of species i 
at plot j (Nij) to be a function of a Poisson random variable with mean 
abundance per plot (λij) (eq. 1). We used a Poisson distribution because 
we assumed that individuals and species of interest were randomly 
distributed across plots (Royle, 2004). To account for over-dispersion 
in abundance, we modeled mean abundance of species as a random 
effect that varied by species (eq. 2). We used a vague normal distribu-
tion N (0, 1,000) for the prior distribution (hereafter “prior”) of mean 
abundance.

2.1.2 | Modeling observations

The DDO survey method produces observations with three possi-
ble outcomes: (1) The primary observer detects an individual; (2) the 
secondary observer detects an individual that the primary observer 
misses; and (3) both the primary and secondary observer fail to detect 
an individual. Each of these outcomes has a different probability of 
occurring because they are based on a combination of events result-
ing from two observers. Outcome 1 is based only on the primary ob-
server’s ability to detect an individual (p1). Outcome 2 is a product of 
the probability that the primary observer did not detect an individual 
(1−p1) and the secondary observer’s ability to detect an individual (p2). 
Outcome 3 is a product of neither observer detecting an individual 
(1−p1)*(1−p2). Because this process has multiple outcomes with multi-
ple probabilities, it is a multinomial process. We modeled the observed 
abundance of species i at plot j at survey replicate k (yijk) as a multino-
mial random variable that is a function of latent abundance (Nij) (eq. 1), 
and three multinomial cell probabilities πijk that represent the DDO 
survey outcomes (eq. 3; Data S2).

2.2 | Simulation study

We simulated data to assess the performance of the MDAM. We used 
a random Poisson distribution to model true abundance for four hy-
pothetical species randomly distributed across 20 plots. Count data 
were generated using a random multinomial distribution with the 
three cell probabilities that corresponded to the outcomes of the 
DDO process, described above. The count data reflected two observ-
ers using the DDO method on three replicate visits at each of the 20 
plots over a single season. Detection was held constant at .3 for the 
primary observer and .5 for the secondary observer. We considered 
differences in individual observer effect as the only source of varia-
tion in detectability in the observation process. We assumed that all 
four species were available and observed on each plot during each 
survey replicate. All analyses were conducted in program R (version 
3.2.0; R Development Core Team 2015) and JAGS (http://mcmc-jags.

(1)Nij∼poisson (λij)

(2)�ij∼exp (log⋅nij)

(3)yijk∼Multinomial (Nij, πijk)

http://mcmc-jags.sourceforge.net
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sourceforge.net). Code to generate simulated data executes the 
MDAM are included in Data S1.

2.2.1 | Assessing MDAM performance

We ran MCMC with three Markov chains for each data set. Each chain 
consisted of 50,000 iterations, of which the first 5,000 iterations were 
discarded as a burn-in. We specified over-dispersed starting val-
ues for three Markov chains based on recommendations from King, 
Morgan, Gimenez, and Brooks (2010). To assess chain convergence, 
we used two diagnostics: (1) Trace plots, which show all of the values 
of the Markov chains during the 50,000 iterations, to visually inspect 
chain mixing (King et al., 2010); and (2) the ̂R statistic, an estimate of 
the ratio of the among-chain variance to the within-chain variance 
(Brooks & Gelman, 1998).

We used simulated data to examine the precision and accuracy 
of the MDAM. We compared true abundance and detection values 
we generated to the MDAM estimates of abundance and detection 
to measure precision and determine whether the abundance values 
from the simulations contained the true abundance values. To assess 
the ability of the model to recover truth, we measured coverage, or 
the percent of time the 95% credible interval (CRI) of the MDAM es-
timates of abundance and detection included the known true values 
of abundance and detection. We measured accuracy by calculating the 
mean absolute percent error of the MDAM parameter estimates for 
abundance and detection. Mean absolute percent error was calculated 

as the absolute value of the difference between the true parameter 
value and MDAM parameter estimates divided by the true parameter 
value, all multiplied by 100. To ensure that the MDAM could accu-
rately predict parameters under a wide range of possible survey out-
comes, we ran the MDAM 100 times with different starting values 
each time. We summarized the results of the 100 simulations to assess 
overall MDAM performance.

2.3 | MDAM extension: application example

2.3.1 | Applying the MDAM extension

To demonstrate the applicability of MDAM extensions, we applied 
the MDAM to a two-year case study using eight avian species of prai-
rie songbird communities in eastern Montana. We selected the eight 
species that represent a wide spectrum of vegetation use present in 
sagebrush ecosystems. They range from the following: Species de-
pendent entirely on sagebrush, Brewer’s sparrow (Spizella breweri); 
to species dependent entirely on grassland vegetation, chestnut-
collared longspur (Calcarius ornatus), horned lark (Eremophila alp-
estris), lark bunting (Calamospiza melanocorys), McCown’s longspur 
(Rhynchophanes mccownii), vesper sparrow (Pooecetes gramineus), 
and western meadowlark (Sturnella neglecta); to a species depend-
ent on both sagebrush and grassland vegetation, the brown-headed 
cowbird (Molothrus ater) (Figure 1). The structure of the MDAM ex-
tension is described below.

F I G U R E   1 The eight avian species used 
in the case study data: (a) Brewer’s sparrow 
(Spizella breweri); (b) brown-headed cowbird 
(Molothrus ater); (c) chestnut-collared 
longspur (Calcarius ornatus); (d) horned 
lark (Eremophila alpestris); (e) lark bunting 
(Calamospiza melanocorys); (f) McCown’s 
longspur (Rhynchophanes mccownii); (g) 
vesper sparrow (Pooecetes gramineus); and 
(h) western meadowlark (Sturnella neglecta)

(a) (b) (c)

(d) (e) (f)

(g) (h)

http://mcmc-jags.sourceforge.net
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2.3.2 | Case study data set

Observers conducted counts of the eight sagebrush songbird species 
described above using the DDO method during the peak songbird 
breeding season (May through July) in 2013 and 2014. The surveys 
were conducted on approximately 2,000 ha of private and public 
rangelands in Golden Valley and Musselshell counties, Montana, USA. 
The area is dominated by sagebrush (Artemsia tridentata spp. wyo-
mingensis) and native grassland. Sampling plots were 25 ha (Figure 2) 
with 40 plots on private land and 40 plots on public land for a total 
of 80 plots. The plot size was based on covering 125 m from a survey 
transect (Figure 2) based on ≥95% of songbird detections are within 
125 m of a single observer (Ralph et al. 1995). Observers surveyed 
each plot three times (approximately once a month in May, June, and 
July) over the breeding season within a year. Surveys were conducted 
between approximately 0600 and 1100 hrs. Surveys were not con-
ducted during inclement weather or when winds were greater than 
15 mph.

2.3.3 | Modeling abundance

True abundance of species i at plot j in year y (Nijy), was modeled as a 
Poisson random variable with mean species abundance per plot in each 
year (λijy) (eq. 4). We included land ownership as a binary categorical 
covariate to account variation in the abundance of these eight species. 
Differences in land management associated with land ownership have 
been suggested to change the potential of a landscape to support bio-
logical communities (Scott et al., 2001). We let the effect of land own-
ership vary by species i to capture the variation in species’ responses 
to land-use practices or other variables associated with ownership. We 
used a log link function to relate land ownership to abundance using a 
linear predictor of mean species abundance per plot in each year (λijk). 

We modeled the mean species abundance per plot in each year as a 
function of the linear combination of a species-specific intercept (β0i), 
plus a fixed effect of land ownership that varied by species (β1i), a fixed 
effect for year that varied by species (β2i), plus a random effect for plot 
(αj) to account for variation not otherwise explained (eq. 5).

We used vague normal distributions N (0, 1,000) for the prior of 
the coefficients of the linear predictor of the mean species abundance 
per plot in each year (λijy). We included year as a binary categorical 
covariate to account for variation in abundance between years. For 
the random effect (αj), we used a uniform distribution ranging from 0 
to 100 for the prior on the dispersion parameter.

2.3.4 | Modeling observations

We used the basic MDAM structure to model observations for the 
case study data. We modeled the observed abundance of species i at 
plot j in year y at survey replicate k (yijky) as a multinomial random vari-
able that is a function of true abundance (Nijy) (eq. 3) and cell probabili-
ties (πijk) based on the DDO surveys described above (eq. 6; Data S3).

We accounted for variation in the observation process by includ-
ing both individual observer and species effects. We did not include 
additional explanatory covariates in the observation process because 
additional sources of variation were reduced using timing and weather 
restrictions for all DDO surveys, described in Case Study Data Set below. 
We used vague normal distributions N (0, 10,000) for the priors of detect-
ability for each observer that informed the multinomial cell probabilities.

2.3.5 | MDAM extension performance

We ran MCMC with three Markov chains for each data set. Each chain 
consisted of 50,000 iterations, of which the first 5,000 iterations were 
discarded as a burn-in (see Data S1 for code). We used visual inspec-
tion trace plots (King et al., 2010) and the ̂R statistic (Brooks & Gelman, 
1998) to examine parameter convergence. We also examined the pos-
terior density distributions, probability distributions that represent a 
parameter estimate, to check for smooth, unimodal posterior distribu-
tions. A unimodal posterior distribution indicates that a single, pre-
dicted value of a parameter (the parameter estimate where the peak 
of the distribution occurs) has the highest probability of support.

3  | RESULTS

3.1 | Basic MDAM

Markov chain convergence appeared to have been reached for abun-
dance and detection by the 5,000 iteration burn-in period. Good 
convergence is represented by chains with considerable overlap, so 
that all chains appear almost indistinguishable from one another. In 

(4)Nijy∼poisson (λijy)

(5)log(λijy)=β0i+β1i× land ownership+β2i×year+αj

(6)yijky∼Multinomial (Nijy, πijk)

F IGURE  2 Dependent double-observer method. The primary 
(open circle) and secondary observer (dashed circle) walk single-file 
along the transect (dotted line) within a 500 m × 500 m sampling 
plot. Observers survey up to 125 m on either side of the transect. All 
surveys start at the lower right corner of the transect. Bold arrows 
indicate direction of travel
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addition, all ̂R values were near one (<1.01). Values of ̂R close to 1 in-
dicate that the Markov chains have converged on the single posterior 
value. Mean coverage across 100 repeated simulations was 0.945, or 
94.5%, meaning that on average 94.5% of abundance estimates in any 
given simulation had a 95% CRI which included truth. Coverage for 
detection was similarly high at 0.925. The MDAM also provided ac-
curate estimates. The majority of abundance estimates from the simu-
lations (92.2%) had a mean absolute percent error between 0% and 
20% (Table 2), with an overall mean value of 7.7%. The mean absolute 
percent errors for detection estimates were less than or equal to 5% 
(Table 3), with an overall mean value of 1.2%.

3.2 | MDAM extension

Markov chain convergence appeared to have been reached for all pa-
rameters: abundance, detection, and effect of private land. All ̂R values 
were near one (<1.01). Posterior distributions were smooth and uni-
modal, suggesting convergence and adequate mixing. Figure 3 shows 
the posterior density distributions of the abundance estimates for the 
eight avian species that were analyzed with the MDAM.

The case study data consisted of 11,267 observations in 2013 and 
12,175 observations in 2014 of the eight sagebrush songbird species 
(Table 4). In both 2013 and 2014, total observations were higher on 
private land (6,080 and 6,878, respectively) than public land (5,187 

and 5,297, respectively), although this pattern differed by species. In 
2013 and 2014, observers recorded more Brewer’s sparrows, brown-
headed cowbird, lark bunting, vesper sparrow, and western meadow-
lark on public land than on private land. In contrast, in 2013 and 2014, 
there were more horned larks and McCown’s longspurs observed 
on private land than public land. The observed number of chestnut-
collared longspurs was similar between land ownership and years.

Detection probabilities varied greatly between observers and spe-
cies, ranging from 0 to 0.79 (Figure 4). Lark buntings had the lowest 
average detection probability (0.05), followed by brown-headed cow-
bird (0.23), chestnut-collared longspur (0.27), vesper sparrow (0.37), 
western meadowlark (0.73), Brewer’s sparrow (0.39), horned lark 
(0.51), and McCown’s longspur (0.58).

Predicted abundance patterns were similar for most species 2013 
and 2014 (Figure 5; Table 5). There were significantly more (i.e., 95% 
CRIs did not overlap) individuals predicted on public land in 2013 for 
lark bunting and western meadowlark than private land. However, 
this pattern did not remain in 2014, when the difference in abun-
dance for both lark bunting and western meadowlark was not sig-
nificant between public and private lands. On the other hand, there 
were significantly more McCown’s longspurs per 25 ha predicted on 
private land in 2013 and 2014 than public land. For all other species, 
brown-headed cowbird, Brewer’s sparrow, chestnut-collared longspur, 
horned lark, and vesper sparrow, there was no significant difference in 
2013 and 2014 between public land and private land (Table 5).

Land ownership had positive, negative, and neutral effects on the 
eight species examined (Figure 6). The results in the remainder of this 
section are presented as an estimate from the MDAM (on the link 
scale) and a 95% CRI in brackets. There was no significant effect (i.e., 
the 95% CRI overlapped with 0 and the most support in posterior dis-
tribution was for values at or near 0 on the link scale) on the estimated 
abundance for two of the eight species examined: Brewer’s sparrow 
(−0.05 [−0.30–0.18]) and vesper sparrow (−0.03 [−0.27–0.21]). Private 
land ownership had a significant positive effect on the predicted 

TABLE  2 Mean absolute percent error for abundance estimates 
from the multispecies dependent double-observer abundance model. 
Data were simulated 100 times for four species surveyed on 20 plots 
three times over a season by two observers

Mean absolute percent error % of simulationsa

0–20 92.2

21–40 5.7

41–60 1.1

61–80 0.5

81–100 0.2

>100 0.3

a% of simulations represents the percent of simulations of 100 that fall 
within the given range.

TABLE  3 Mean absolute percent error for detection probability 
estimates from the multispecies dependent double-observer 
abundance model. Data were simulated 100 times for four species 
surveyed on 20 plots three times over a season by two observers

Mean absolute percent error % of simulationsa

1 51.0

2 30.5

3 14.5

4 3.5

5 0.5

a% of simulations represents the percent of simulations of 100 that fall 
within the given range.

F IGURE  3 The posterior distributions of average abundance 
per 25 ha in 2013 on public land for eight avian species. Estimates 
are derived using the multispecies-dependent double-observer 
abundance model and data collected near Roundup, Montana in 2013
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abundance of chestnut-collared longspur (0.43 [0.16–0.70]), horned 
lark (0.37 [−0.13–0.62]), and McCown’s longspur (1.26 [1.02–1.51]). 
Private land ownership had a significant negative effect on three spe-
cies: brown-headed cowbird (−0.49 [−0.79 to −0.20]), lark bunting 
(−0.74 [−1.01 to −0.48]), and western meadowlark (−0.49 [−0.73 to 
−0.23]).

4  | DISCUSSION

The MDAM extends previous multispecies N-mixture models to in-
clude a removal-based survey method that reduces the rate of false 
positives. It provides flexibility for synthesizing multiple sources of 
data that are hindered by imperfect detection from biological (e.g., 
differences in abundance that arise from different land use) and ob-
servation process (e.g., observer performance). Although it is similar 
to the multinomial abundance model published by Kéry and Royle 
(2010) and the model published by Chandler et al. (2013), it is the first 
to implement the DDO methodology in the multispecies N-mixture 
structure.

All performance diagnostics indicated that the MDAM is an accu-
rate and suitable model for multispecies analyses. Information from 
the DDO method provided detailed encounter history information 
for each detected individual that was used to model the observation 
process. With the MDAM extension, each encounter history incor-
porated individual observer effects and species effects. The MDAM 
consistently predicted precise values that contained the true param-
eters when run 100 times with different starting values, indicating 
that the predications are reliable. Similarly, the convergence diag-
nostics and posterior distributions of the MDAM extension indicated 
that the MDAM extension converged well on posterior distribution 
estimates.

The predictions of the MDAM extension were biologically sound 
and congruent with other studies. The community composition of 

this prairie system predicted by the MDAM extension is similar to 
songbird communities in nearby sagebrush and mixed-grass com-
munities (Bradford et al., 1998; Jones, Scott Dieni, & Gouse, 2010; 
Reinkensmeyer, Miller, Anthony, & Marr, 2007). The most abundant 
species, McCown’s longspur, western meadowlark, vesper sparrow, 
and Brewer’s sparrow, were consistent with other findings (Bradford 
et al., 1998; Jones et al., 2010). We found that land ownership had a 
neutral or positive effect on predicted abundance for the majority of 
species, five of eight, which we investigated. The positive effect of pri-
vate land on chestnut-collared longspur, horned lark, and McCown’s 
longspur abundance was consistent with other findings about private 
lands, which often support more species than public or protected 
lands (Scott et al., 2001).

The MDAM provides many benefits that result from both the 
MDAM model structure and the DDO survey method. The MDAM 
structure does not require replication at some sample plots like other 
multispecies N-mixture models because of the detectability informa-
tion contained within the DDO observations. Therefore, it is possi-
ble that field efforts could be reduced with similar information yield, 
which is useful when trying to allocate limited personnel and financial 
resources. Using the DDO method, observers can work together to 
identify a bird and ensure double counting is not occurring, likely re-
ducing false positives. The observation outcomes, primary observer 
detects an individual or secondary observer detects an individual that 
the primary missed, must be correctly recorded. Once that occurs, the 
observers have flexibility to collaborate to identify characteristics of 
the individuals (e.g., species, sex). The ability of the observers to work 
together on identification, with the stipulation that the observation 
outcome has to be correctly recorded, also allows new observers to be 
quickly trained in bird identification.

The MDAM structure is generalizable and can be applied to 
many different systems to estimate multispecies abundance. The 
multispecies abundance data from the MDAM can be used to de-
rive abundance-based biodiversity metrics that summarize species 

TABLE  4 Summary of observations of eight sagebrush songbirds surveyed using the dependent double-observer method in 2013 and 2014 
near Roundup, MT. Plots refers to the number of plots of 40 in which the species was detected. Observed refers to the total number of 
individuals observed during the three sampling occasions.

Common name

2013 2014

Public Private Public Land Private

Plots Observed Plots Observed Plots Observed Plots Observed

Brewer’s sparrow 35 979 27 804 33 1,101 24 927

Brown-headed cowbird 30 200 17 90 26 203 20 120

Chestnut-collared longspur 16 168 19 272 5 209 16 197

Horned lark 33 597 37 1,015 31 870 37 1,075

Lark bunting 17 345 17 113 19 352 20 234

McCown’s longspur 18 1,037 31 2,450 15 726 29 2,824

Vesper sparrow 39 1,066 39 936 38 1,057 37 1,030

Western meadowlark 40 795 40 400 40 779 39 471

Totals 5,187 6,080 5,297 6,878
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richness and evenness, or relative abundance to other species. In ad-
dition, it is possible to relax many of the assumptions of the MDAM. 
For example, the assumption that every species is available for sam-
pling during the observation process is unrealistic (Dorazio & Royle, 
2005). However, this can be addressed in the MDAM by adding 
another level to the hierarchical model that represents the animal’s 
availability, as described by Kéry and Schaub (2012). In our case study 
example, the only explanatory covariate for latent abundance is land 
ownership. The MDAM can accommodate additional biotic or abiotic 

covariates that are plot- and/or ecosystem-specific to explain varia-
tion in abundance. In addition, abundance estimates from the MDAM 
can be used in an integrated population model (Kéry & Schaub, 2012). 
This can provide a clearer picture of the mechanisms driving changes 
in abundance and biodiversity. The MDAM can also be used to con-
currently track the abundance of a single species and a biodiversity 
parameter of interest. If monitored over multiple seasons, this can 
provide a potential method to determine whether a focal species 
reliably tracks changes in a community. Finally, although the DDO 

F IGURE  4 The average probability 
(right y-axis) that an individual observer 
(x-axis) detected each avian species (left 
y-axis) during dependent double-observer 
surveys conducted on public and private 
lands near Roundup, Montana, in 2013 
and 2014. Black bars represent the 95% 
Bayesian credible intervals of the estimate
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was developed as a bird survey method (Nichols et al., 2000), it can 
be used on additional taxa. Double-observer methods have already 
been used for marine and terrestrial mammals (Buckland, Laake, & 
Borchers, 2010; Griffin et al., 2013; Hoef, Cameron, Boveng, London, 
& Moreland, 2014) and amphibians (Becker, Moorman, DePerno, & 
Simons, 2013).

The patterns of abundance of multiple species are fundamental 
to understanding biodiversity. The MDAM provides a framework of 
reliable multispecies abundance predictions and can accommodate 
extensions that have important implications for conservation. The 
MDAM has the flexibility to incorporate long-term, large-scale, and 
multitaxa data. It can provide data-driven solutions to reduce cost and 
effort put into biodiversity monitoring while still providing accurate, 
high-resolution data. In addition, there may be further extensions of 
the MDAM, such as methods to quantify the rates of false positives 
that would allow for an unprecedented accuracy in multispecies mon-
itoring. Given the field and data benefits of the MDAM and its ability 

F IGURE  5 The average estimated abundance per 25 ha on public and private land for eight avian species. Black bars represent the 95% 
Bayesian credible intervals of the estimate. Predictions are derived from the multispecies-dependent double-observer abundance model using 
data collected near Roundup, Montana in 2013 and 2014

TABLE  5 The average estimated abundance ( ̂N) and 95 percent credible intervals (CRI) per 25 ha on public and private land for eight avian 
species. Predictions are derived from the multispecies dependent double-observer abundance model using data collected near Roundup, 
Montana in 2013 and 2014

Common Name

2013 2014

Public Private Public Land Private

̂N 95% CRI ̂N 95% CRI ̂N 95% CRI ̂N 95% CRI

Brewer’s sparrow 16.9 14.0–20.1 15.9 13.2–19.0 14.2 11.2–17.8 13.4 10.4–16.9

Brown-headed cowbird 5.2 3.9–6.9 3.2 2.3–4.3 6.8 4.1–11.0 4.2 2.5–6.9

Chestnut-collared longspur 3.0 2.3–3.7 4.6 3.7–5.7 2.1 1.4–2.9 3.2 2.2–4.5

Horned lark 11.3 9.4–13.4 16.4 13.6–19.5 14.4 11.5–17.9 20.9 16.7–26.0

Lark bunting 21.5 15.1–30.8 10.2 6.9–15.0 4.4 2.4–7.3 2.1 1.1–3.6

McCown’s longspur 13.0 10.8–15.5 46.2 38.8–54.6 13.9 11.2–17.1 49.4 40.3–59.9

Vesper sparrow 18.2 15.1–21.7 17.6 14.6–21.0 18.7 14.8–23.4 18.1 14.3–22.7

Western meadowlark 16.0 13.1–19.4 9.8 8.0–12.0 24.9 18.8–32.6 15.3 11.5–20.1

F IGURE  6 The effect of private land ownership on average 
abundance per 25 ha compared to public land ownership for eight 
songbird species on public and private lands near Roundup, Montana, 
in 2013 and 2014. The effect values are on the link scale
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to accommodate extensions, the MDAM can be an instrumental tool 
for the future of biodiversity conservation.
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